
1

U9800 Series Impulse Winding
Tester
Programming Guide

1 Command Introduction .. 1

1.1 Notation Conventions and Definitions ... 1
1.2 Short-form Rules of Command and Parameter 2

2 Command System ... 3
2.1 Common Commands ... 4
2.2 DISPlay Subsystem Commands .. 9
2.3 Impulse VOLtage subsystem commands .. 11
2.4 SAMPle rate subsystem commands .. 14
2.5 STATistic subsystem commands ... 15
2.6 TRIGger subsystem commands ... 16
2.7 COMParator subsystem commands .. 18
2.8 Standard WAVE subsystem commands ... 23
2.9 Multi WINding subsystem commands(Only for multi-channels) 24
2.10 MEASure subsystem commands ... 27
2.11 WAVeform subsystem commands ... 29
2.12 FETCh subsystem commands .. 31
2.13 ABORt subsystem command .. 33
2.14 Mass MEMory subsystem commands ... 33
2.15 KEY subsystem commands ... 34
2.16 SYSTem subsystem commands ... 35

3 Error and warning message .. 38
4 Programming Examples ... 39

4.1 Visual C++ 6.0 Programming Example ... 41
4.2 Visual Basic 6.0 Programming Examples .. 47
4.3 LabVIEW 8.5 Programming Examples .. 51

1

Programming guide provides guidance for user to program this impulse
winding tester with existing commands, mainly dealing with notation
conventions and definitions, short-form rules of command and parameter,
commands introduction and appendix.
You can further program this impulse winding tester with the commands
mentioned in this guide.

1 Command Introduction

1.1 Notation Conventions and Definitions
： A colon is used to separate the higher level commands and the lower
level commands.
? A question mark is used to generate a query for the command in front
of it.
； The semicolon can be used as a separator to execute multiple
commands on a single line.
* Asterisk is used to indicate that the command followed is a common
command.
， Comma is used to separate the multi-parameters in the command.
- White space is used as a separator between a command and a
parameter.
<> Words or characters enclosed in angle brackets symbolize a program
code parameter.
[] Items that enclosed in square brackets are optional.
{} When several items are enclosed by brace, only one of these
elements may be selected.
NR1 Specify integer data (For example: 12)
NR2 Specify fixed-point data (For example: 12.3)
NR3 Specify exponential data in floating point format (For example:
2.000000e-03)
NL New Line character (ACSII decimal 10) is the end of the input/output
string.
Note: behind every command string must be enclosed in NL (ASCII is 10) as command
terminator.

2

1.2 Short-form Rules of Command and Parameter
For memory and writing conveniences to long-form commands or parameters,
we will use the following rules to shorten the long-form commands or
parameters.
If the length of the command word is four letters or less, no short form version
exists.
Example:
TYPE=TYPE
These following rules apply to command words that exceed four letters:
1. If the fourth letter of the command word is a vowel, delete it and all the
letters after it.
2. If the fourth letter of the command word is a consonant, retain it but drop
all the letters after it.
Examples:
POSition abbreviates to POS.
DISPlay abbreviates to DISP.
If the long-form mnemonic is defined as a phrase rather than a single word,
then the long-form mnemonic is the first character of the first word followed by
the entire last word. The above rules, when the long-form mnemonic is a
single word, are then applied to the resulting long-form mnemonic to obtain the
short form.
Example:
Impulse VOLTage, whose long form would be IVOLtage, abbreviates to IVOL.

3

2 Command System

U9800 series support the following subsystem commands:
◆Common Commands
◆DISPlay Subsystem Commands
◆Impulse VOLtage Subsystem Commands
◆SAMPle Subsystem Commands
◆STATistic Subsystem Commands
◆TRIGger Subsystem Commands
◆COMParator Subsystem Commands
◆Standard WAVeform Subsystem Commands
◆Multi WINding Subsystem Commands
◆MEASure Subsystem Commands
◆WAVeform Subsystem Commands
◆FETCh Subsystem Commands
◆ABORt Subsystem Commands
◆Mass MEMory Subsystem Commands
◆KEY Subsystem Commands
◆SYSTem Subsystem Commands

4

2.1 Common Commands
The common commands defined by the IEEE 488.2-1987 standard are basic
commands in instrument command system which can work with other
commands as a command set and also can execute special functions
independently.
Common commands used in instrument command system are shown as table
2-1-1.

Command Query Return Format
N/A *IDN？ Eucol Electronic Technology Co., Ltd.,<model>,<

serial number>,< software version>
*RST N/A N/A
*RCL
<value>

N/A N/A

*SAV
<value>

N/A N/A

*TRG N/A N/A
*CLS N/A N/A
*ESE
<0-255>

*ESE? Event Status Enable Register

N/A *ESR? Event Status Register
*OPC *OPC? Returns 1
*SRE
<0-255>

*SRE? Service Request Enable Register

N/A *STB? Service Request Register
N/A *LRN? Returns instrument settings

1. *IDN?

The *IDN ? query returns the instrument information, including company name,

instrument model, instrument serial number and software version.

Query Syntax: *IDN?

Return Format: Eucol Electronic Technology Co., Ltd., <model>, <serial

number>, <software revision><NL>

Table 2-1-1

5

Example:

*IDN? Eucol Electronic Technology Co., Ltd., U9815, 502-A13-105, VER1.0
10 070623A

2. *RST (Reset)

The *RST command places the instrument in a known state—factory default

state.

Query Syntax: *RST

3. *RCL <value>
The *RCL <value> command restores the state of the instrument from the
specified setup file position, <value>= {single channel :1 to 300;double
channels: 1 to 150; four chanels: 1 to 120}.
Query Syntax: *RCL <value>
Example:
*RCL 1 Restore the state of the instrument from the specified Setup01.

4. *SAV <value>
The *SAV command stores the current state of the instrument to the specified
setup file position. <value>= {single channel :1 to 300;double channels: 1 to
150; four chanels: 1 to 120}.
Command Syntax: *SAV <value>[,“name”], name is the file name,the length of
name should be less then 20 charactors.
Example:
*SAV 1 Store the current state of the instrument to the specified Setup01.

5. *TRG
The *TRG command generates forcible triggering signal. When an acquisition
is completed, the instrument is stopped (similar to single+force trig).
Command Syntax: *TRG

6

6. *CLS
The *CLS command clears the status register, output buffer data and the
Request-for-OPC flag.
Command Syntax: *CLS

7. *ESE <0-255>

*ESE common command sets the bits in the Standard Event Status Enable

Register. The Standard Event Status Enable Register contains a mask value

for the bits to be enabled in the Standard Event Status Register. A “1” in the

Standard Event Status Enable Register enables the corresponding bit in the

Standard Event Status Register.

ESE (Event Status Enable Register)

PON CME EXE QYE OPC
Event Descriptions

Bit Name Description When Set to 1, Enables
7 PON Power on Event when an OFF to ON transition

occurs.
5 CME Command Error Event when a command error is

detected.
4 EXE Execution Error Event when an execution error is

detected.
2 QYE Output data

loss
Event when data and command in
output buffer

0 OPC Operation
complete

Event when an operation is
complete.

Command Syntax: *ESE <0-255>
Query Syntax: *ESE?
Return Format：<NR1><NL> Return the ESE register
value.

8. *ESR?
The *ESR? query returns the contents of the Standard Event Status Register.
When you read the Event Status Register, the value returned is the total bit

7

weights of all of the bits that are high at the time you read the byte. Reading
the register clears the Event Status Register.
ESR（Event Status Register）

Bit Nam
e

Description When Set to 1, Indicates:

7 PON Power on An OFF to ON transition has
occurred.

5 CME Command error A command error has been
detected.

4 EXE Execution error An execution error has been
detected.

2 QYE Output data
loss

Output data loss has been
detected

0 OPC Operation
complete

Operation is complete.

Query Syntax: *ESR?
Return Format: <NR1><NL> Return the current status.

9. *OPC
The *OPC command places an ASCII “1” in the output queue when all pending
device operations have completed.
Command Syntax: *OPC
Query Syntax: *OPC?
Return Format: <1><NL>
Note: The interface hangs until this query returns.

10. *SRE <0-255>
The *SRE command sets the bits in the Service Request Enable Register. The
Service Request Enable Register contains a mask value for the bits to be
enabled in the Status Byte Register. A “1” in the Service Request Enable
Register enables the corresponding bit in the Status Byte Register. A “0”
disables the bit.
SRE（Service Request Enable Register）
 ESB MAV

8

Event Descriptions
Bit Name Description When Set to 1, Enables:
5 ESB Event Status

Bit
Interrupts when enabled conditions
in the Standard Event Status
Register (ESR) occur.

4 MAV Message
Available

Interrupts when messages are in the
Output Queue.

Command Syntax: *SRE <0-255>
Query Syntax: *SRE?
Return Format: <NR1><NL> Return the current value of the Service

Request Enable Register.

11. *STB?
The*STB? query returns the current value of the instrument’s status byte.
Status Byte Register (STB)

 RQS ESB MAV
Event Descriptions

Bit Name Description When Set to 1, Indicates:
6 RQS Request

Service
When polled, indicates that the device is
requesting service or not.

5 ESB Event Status Bit Indicates that an enabled condition in the
Standard Event Status Register (ESR)
has occurred.

4 MAV Message
Available

Indicates that there are messages in the
Output Queue.

Query Syntax: *STB?
Return Format: <NR1><NL> Return Service Request Register
value.
12. *LRN?
The*LRN? query returns the settings of the instrument.
Query Syntax: *LRN?
Return Format: <data block><NL>
data block format：
1. #8xxxxxxxx Followed by the binary data, no Spaces, XXXXXXXX is data

length.
2. $8xxxxxxxx Followed by the string data, no Spaces, XXXXXXXX is data

length.

9

String format is to convert binary data to the string data, each binary data into
two ASCII character data (a valid data is composed of two bytes), these two
characters represent binary data corresponding to the high four and low four of
hexadecimal data. For example the 0x01 data is converted to "0" and "1" two
characters.
Note: Using the command SYSTem: the FORMat {ASCii | BIN} to set the
data back to FORMat.

2.2 DISPlay Subsystem Commands
DISPlay commands are used to control the display system. Figure 2-2-1

shows the DISPlay system command tree.
DISPlay :PAGE MEASurement

 MSETup
 SSETup
 STATistic
 INFO
 FLISt

:WAVE AON
 STD
 TEST
 AOFF
 :GRID ON (1)
 OFF (0)
 :COROna ON (1)
 OFF (0)
 :ENLarge ON(1)

 OFF(0)

:PAGE
The :PAGE command set up the display page of instrument. The :PAGE?
Command returns the abbreviated page name currently displayed on the LCD
screen.
Command Syntax：DISPlay:PAGE <page name>
<page name> as follows:

Figure 2-2-1

10

MEASurement set the instrument display page to Measurement display
page.
MSETup set the instrument display page to Measurement Setup
page
SSETup set the instrument display page to System Setup page
STATistic set the instrument display page to Statistics page
INFO set the instrument display page to System Information
page
FLISt set the instrument display page to File list page

Query Command: DISPlay:PAGE?
Return Format： {MEAS | MSET | SSET | STAT | INFO | FLIS}<NL>
Note: During the measuring, the query command is ignored.

:WAVeform
The :WAVeform command sets the waveform display mode. The :WAVeform?
Query returns the current waveform display mode.
Command Syntax: DISPlay:WAVeform {AON | STD | TSET | AOFF}
Where,
 ON Display both the standard and tested waveforms on the LCD
screen.
 STD Only display the standard waveform on the LCD screen.
 TSET Only display the tested waveform on the LCD screen.
 AOFF No waveform will be displayed on the LCD screen.
Query Syntax: DISPlay:WAVeform?
Return format: {AON | STD | TSET | AOFF}<NL>

:GRID
The :GRID command sets the grid display mode. The :GRID? Query returns
the current grid display mode.
Command Syntax: DISPlay:GRID { {1 | ON} | {0 | OFF}}
Query Syntax: DISPlay:GRID?
Return format: {{1 | ON} | {0 | OFF}}<NL>

:COROna
The :COROna command sets the corona display mode. The :COROna? query
returns the current corona display mode.
Command Syntax: DISPlay:COROna { {1 | ON} | {0 | OFF}}

11

Query Syntax: DISPlay:COROna?
Return format: {{1 | ON} | {0 | OFF}}<NL>

:ENLarge
The :ENLarge command sets the test waveform enlarge display on MEAS
DISP page. The :ENLarge? query returns the current status of the test
waveform on MEAS DISP page.
Command Syntax: DISPlay:ENLarge { {1 | ON} | {0 | OFF}}
Query Syntax: DISPlay:ENLarge?
Return format: {{1 | ON} | {0 | OFF}}<NL>

Note：Where,
 1 (decimal49) is equal to ON; 0 (decimal48) is equal to OFF.

2.3 Impulse VOLtage subsystem commands
The Impulse VOLtage subsystem commands set the impulse voltage,

average times, impulse voltage auto adjust and delay, etc. Figure 2-3-1 shows
the Impulse VOLtage subsystem command tree.

Impulse VOLtage :VOLTage[<n>] <value>

 MIN
 MAX
 :Break VOLtage <start>,<stop>,<step>
 :Break MODe FAIL
 END
 :Break IMPulse <value>
 :Test IMPulse <value>

:Dummy IMPulse <value>
 :Voltage ADJust [:STATe] ON (1)
 OFF (0)

:VOLTage
The :VOLTage command sets the impulse voltage for testing. The :VOLTage?
query returns the current impulse voltage valure.
Command Syntax: IVOLtage:VOLTage {<value> | MAX | MIN}

Figure 2-3-1

12

 Where, <value> can be NR1, NR2 or NR3 format followed by KV or V
and the value must be between100V to 5000V.
 MIN Set the impulse voltage to 100V
 MAX Set the impulse voltage to 5000V
Query Syntax: IVOLtage:VOLTage?
Return format: <NR1><NL>
NOTE: The query returns no unit, and the default voltage unit is V.

For U9845 impulse winding tester，The IVOLtage:VOLTage<n> command
sets the impulse voltage for the specify winding. Where n is from 1 ~ 4.

:Break VOLtage
The :Break VOLtage command sets parameters for Break Test. The :Break
VOLtage? query returns the current voltage for Break Test.
Command Syntax: IVOLtage:BVOLtage <start>,<stop>,<step>
Where
<Start> The start voltage for Break Test can be NR1, NR2 or NR3 format
followed by unit. The set start voltage ranges from 100V to 5000V and is less
than <stop>.
<stop> The end voltage for Break Test can be NR1, NR2 or NR3 format
followed by unit. The set end voltage ranges from 100V to 5000V and is larger
than <start>.
<step> The voltage step for Break Test can be NR1, NR2 or NR3 format. The
set voltage step ranges from 1% to 50% of the <start>.
For example: WrtCmd(“IVOL:BVOL 1000V,2KV,15”); set the start voltage to
1000V, end voltage to 2000V and voltage step to 1000*0.15 =150V.
Query Syntax: IVOLtage:BVOLtage?
Return format: <start>,<stop>,<step><NL>
NOTE: The query for Break VOLtage returns no unit and the default
voltage unit is V.

:Break MODe
The :Break MODe command sets the stop mode of the break test. The :Break
MODe？query returns the current stop mode of break test.
Command Syntax: IVOLtage:BMODe {FAIL | END}
Query Syntax: IVOLtage:BMODe?
Return format: {FAIL | END}<NL>

13

:Break IMPulse
The :Break IMPulse command sets the number of the break test impulse.
The :Break IMPluse？query returns the current number of the break test
impulse.
Command Syntax: IVOLtage:BIMPulse {1 | 2 | 3 | 4 | 5 | 6 | 7 | 8}
Query Syntax: IVOLtage:BIMPulse?
Return format: {1 | 2 | 3 | 4 | 5 | 6 | 7 | 8}<NL>

:Test IMPulse
The :Test IMPulse command sets the average times for testing. The :Test
IMPulse? query returns the current average times
Command Syntax: IVOLtage:TIMPulse <value>
Where,
<value1> is NR1 format ranging from 1 to 32 without unit.
Query Syntax: IVOLtage:TIMPulse?
Return format: <NR1><NL>

:Dummy IMPulse
The :Dummy IMPulse command the times of dummy impulses for testing.
The :Dummy IMPulse? query returns the current times of dummy impulses.
Command Syntax: IVOLtage:DIMPulse <value>
 Where,
<value> is NR1 format ranging from 0 to 8 without unit.
Command Syntax: IVOLtage:DIMPulse?
Query Syntax: <NR1><NL>

:Voltage ADJust
The :Voltage ADJust command sets the impulse auto adjust function to ON or
OFF.
The :Voltage ADJust? query returns the current state of the impulse auto
adjust function.
Command Syntax: IVOLtage:VADJust {{1 | ON} | {0 | OFF}}
Query Syntax: IVOLtage:VADJust?
Return format: {{1 | ON} | {0 | OFF}}<NL>

14

2.4 SAMPle rate subsystem commands
 The SAMPle rate subsystem commands set the sample rate and the time
base zoom. Figure 2-4-1 shows the SAMPle rate subsystem command tree.

SAMPle :FREQuency[<n>] <string>
 :EXTend MIN
 MAX
 <n>
 :MODE NORMal
 STD
 QUICk
 BTEST

:FREQuency
The :FREQuency command sets the sample rate. The :FREQuency? query
returns the current sample rate.
Command Syntax: SAMPle:FREQuency {100Msa/s | 50Msa/s | 25Msa/s |
10Msa/s | 5Msa/s | 2.5Msa/s | 1Msa/s | 500Ksa/s | 250Ksa/s | 250Ksa/s |
100Ksa/s}
Query Syntax: SAMPle:FREQuency?
Return format: {100Msa/s | 50Msa/s | 25Msa/s | 10Msa/s | 5Msa/s | 2.5Msa/s |
1Msa/s | 500Ksa/s | 250Ksa/s | 250Ksa/s | 100Ksa/s}<NL>

For U9845，The SAMPle:FREQuency<n> command sets the sample rate of

the specify windings. The rang for n is from 1 to 4.
Note:

1. When the tested device is under test, this command will be
ignored.

2. When the standard waveform is tested in the mode of SINGLE
CYCLE, if the test has not put an end, this command will be ignored; if
the test is nearly finished, this command will select the standard
waveforms under different sample rate.

:EXTend
The :EXTend command sets the time base zoom function. The :EXTend?
query returns the current value of the time base zoom.
Command Syntax: SAMPle:EXTend {MIN | MAX | <n>}

Figure 2-4-1

15

Where ,
<n> is NR1 format ranging from 0 to 3,
MIN Set to display all 6500 points of the waveform, which means the

timer shaft is not extended.
MAX Set to display the first 650 points of the waveform, which means

the timer shaft is extended to ten times the original one.
Query Syntax: SAMPle:EXTend?
Return format: {0 | 1 | 2 | 3}<NL>
:MODE
The :MODE command sets the methods for standard wave sampling.
The :MODE? query returns the current methods for standard wave sampling.
Command Syntax: SAMPle:MODE {NORMal | STD | QUICk | BTESt}
 Where,
NORMal sets the standard wave sampling methods to normal mode.
STD sets the standard wave sampling methods to standard mode.
QUICk sets the test mode to quick mode.
BTESt sets the test mode to break test mode.

Query Syntax: SAMPle:MODE?
Return format: {NORMal | STD | QUICk | BTES}<NL>

2.5 STATistic subsystem commands
 The STATistic subsystem commands set the statistic function to ON or
OFF, clear or save statistic data. Figure 2-5-1 shows the STATistic subsystem
command tree.

STATistic [:STATe] ON(1)
 OFF(0)
 :CLEar
 :RESult?

[:STATe]
The [:STATe] command sets the statistic function to ON or OFF. The [:STATe]?
query returns the current state of the statistic function.
Command Syntax: STATistic[:STATe] {{1 | ON} | {0 | OFF}}
Query Syntax: STATistic[:STATe]?
Return format: {{1 | ON} | {0 | OFF}}<NL>

Figure 2-5-1

16

:CLEar
The :CLEAr command is used to clear the statistic data。
Command Syntax: STATistic:CLEar

:RESult? The :RESult? query returns the current winding’s statistic data.
Return format:
<NR1>,<NR1>,<NR1>,<NR1>,<NR1>,<NR1>,<NR1>,<NR1>,<NR1>,<NR1>
<NL>
Respectively total count, total passed count, area-size count, area-size

passed count, Dif-area count, Dif-area passed count, Corona count,
Corona passed count, Dif-phase count, Dif-phase passed count.

2.6 TRIGger subsystem commands
The TRIGger subsystem command group is used to trigger a measurement or
to set the trigger mode. Figure 2-6-1 shows the TRIGger subsystem command
tree.

TRIGger [:IMMediate]
 :SOURce MAN
 EXTernal
 INTernal
 BUS
 :DELay <value>

[:IMMediate]
The [:IMMediate] command triggers a measurement.
Command Syntax: TRIGger[:IMMediate]
NOTE: The TRIGger[:IMMediate] command, available only in the <MEAS
DISP> page, will be ignored when U9800 is in the testing state.

:SOURce
The :SOURce command sets the trigger mode. The :SOURce? query returns
the current trigger mode.
Command Syntax: TRIGger:SOURce {MANual | EXTernal | INTernal | BUS}

Figure 2-6-1

17

Where,
MANual Triggered by pressing the START button or using foot control

switch.
EXTernal Triggered by the HANDLER interface.
INTernal Automatically triggered after pressing the START button.
BUS Triggered by RS232 interface, USB interface.

Query Syntax: TRIGger:SOURce?
Return format: {MAN | EXT | INT | BUS}<NL>

:DELay
The :DELay command sets the delay time between two triggers. The :DELay?
query returns the current delay time. Delay time range from 0 to 60s with step
of 1ms.
Command Syntax: TRIGger:DELay <value> where <value> is NR3
format.
Query Syntax: TRIGger:DELay?
Return format: <NR3><NL>

18

2.7 COMParator subsystem commands
The COMParator subsystem commands set the compare conditions, such as
Areasize, Diffzone, Corona and Phasediff. Figure 2-7-1 shows the command
tree of the COMParator subsystem commands.

COMParator [:STATe] ON (1)
 OFF (0)
:AREA[<n>] [:STATe] ON (1)

 OFF (0)
 :RANGe <start>，<end>
 :LIMit <value>

 :DIFarea[<n>] [:STATe] ON (1)
 OFF (0)
 :RANGe <start>，<end>
 :LIMit <value>

 :COROna[<n>] [:STATe] ON (1)
 OFF (0)
 :RANGe <start>，<end>
 :LIMit <value>

 :PHASedif[<n>] [:STATe] ON (1)
 OFF (0)
 :POSition <pos>
 :LIMit <value>

[:STATe]
The [:STATe] command sets the comparator function to ON or OFF. The
[:STATe]? query returns the current comparator state.
Command Syntax: COMParator[:STATe] {{1 | ON} | {0 | OFF}}
Query Syntax: COMParator[:STATe]?
Return format: {{1 | ON} | {0 | OFF}}<NL>

:AREA[:STATe]
The :AREA[:STATe] command sets the Areasize comparator function to ON or
OFF. The :AREA[:STATe]? query returns the current Areasize comparator
state.

Figure 2-7-1

19

Command Syntax: COMParator:AREA[:STATe] {{1 | ON} | {0 | OFF}}
Query Syntax: COMParator:AREA[:STATe]?
Return format: {{1 | ON} | {0 | OFF}}<NL>

:AREA:RANGe
The :AREA:RANGe command sets the comparison range of Areasize
comparator. The :AREA:RANGe? query returns the current comparison range
of Areasize comparator.
Command Syntax: COMParator:AREA:RANGe <start>,<end>
 Where,
 <start> start point of comparison range. NR1 format, range from 1 to
6500, without unit.
 <end> end point of comparison range. NR1 format, range from 1 to
6500, without unit.

NOTE: The end point value should be larger than that of the start
point; otherwise an error message will be displayed on the system
message line.
Command Syntax: COMParator:AREA:RANGe?
Query Syntax: <start>,<end><NL > start and end are NR1 format.

:AREA:LIMit
The :AREA:DIFFerence command sets the difference limit value of Areasize
comparator. The :AREA:DIFFerence? query returns the current difference limit
value of Areasize comparator.
Command Syntax: COMParator:AREA:LIMit <value> value ranges from 0.1
to 99.9
 Where
<value> can be NR1, NR2 or NR3 format without unit.
For example: WrtCmd(“COMP:AREA:DIFF 2.5”); set the difference limit
value to 2.5%.
 NOTE: The <value> here is a percent value, For example, input 2.5
for2.5%.
Command Syntax: COMParator:AREA:LIMit?
Query Syntax: <NR3><NL>

:DIFarea[:STATe]

20

The :DIFarea[:STATe] command sets the Diffzone comparator to ON or OFF.
The :DIFarea[:STATe]? query returns the current Diffzone comparator state.
Command Syntax: COMParator:DIFarea[:STATe] {{1 | ON} | {0 | OFF}}
Query Syntax: COMParator:DIFarea[:STATe]?
Return format: {{1 | ON} | {0 | OFF}}<NL>

:DIFarea:RANGe
The :DIFarea:RANGe command sets the comparison range of the Diffzone
comparator. The :DIFarea:RANGe? query returns the current comparison
range of the Diffzone comparator.
Command Syntax: COMParator:DIFarea:RANGe <start>,<end>
 Where,
 <start> start point of comparison range. NR1 format, range from 1 to
6500, without unit.
 <end> end point of comparison range. NR1 format, range from 1 to
6500, without unit.

NOTE: The end point value should be larger than that of the start
point; otherwise an error message will be displayed on the system
message line.
Query Syntax: COMParator:DIFarea:RANGe?
Return format: <start>,<end><NL > start and end are NR1 fromat.

:DIFarea:LIMit
The :DIFarea:LIMit command sets the difference limit value of Diffzone
comparator. The :DIFarea:LIMit? query returns the current difference limit
value of the Diffzone comparator.
Command Syntax: COMParator:DIFarea:LIMit <value> value is from 0.1 to
99.9
 Where,
<value> can be NR1, NR2 or NR3 format without unit.
For example: WrtCmd(“COMP:DIF:LIM 2.5”); set the difference limit value to
2.5%.
NOTE: Here <value> is a percent value, for example, input 2.5 for 2.5%.

Query Syntax: COMParator:DIFarea:LIMit?
Return format: <NR3><NL>

21

:COROna[:STATe]
The :COROna[:STATe] command sets the Corona comparator to ON or OFF.
The :COROna[:STATe]? query returns the current Corona comparator state.
Command Syntax: COMParator:COROna[:STATe] {{1 | ON} | {0 | OFF}}
Query Syntax: COMParator:COROna[:STATe]?
Return format: <NR1><NL>

:COROna:RANGe
The :COROna:RANGe command sets the comparison range of the Corona
comparator. The :COROna:RANGe? query returns the current comparison
range of the Corona comparator.
Command Syntax: COMParator:COROna:RANGe <start>，<end>
 Where,
 <start> start point of comparison range. NR1 format, range from 1 to
6500, without unit.
 <end> end point of comparison range. NR1 format, range from 1 to
6500, without unit.
NOTE: The end point value should be larger than that of the start point;
otherwise an error message will be displayed on the LCD screen.
Query Syntax: COMParator:COROna:RANGe？
Return format: <start>,<end><NL> start,end is NR1 format.

:COROna:LIMit
The :COROna:LIMit command sets the difference limit value of the Corona
comparator. The :COROna:LIMit? query returns the current difference limit
value of the Corona comparator.
Command Syntax: COMParator:COROna:LIMit <value>
 Where,
 <value> is NR1 format, range from 1 to 255 without unit.

Query Syntax: COMParator:COROna:LIMit?
Return format: <NR1><NL>

:PHASedif[:STATe]
The :PHASediff[:STATe] command sets the Phasediff comparator to ON or
OFF. The :PHASediff[:STATe]? query returns the current Phasediff
comparator state.

22

Command Syntax: COMParator:PHASedif[:STATe] {{1 | ON} | {0 | OFF}}
Query Syntax: COMParator:PHASediff[:STATe]?
Return format: {{1 | ON} | {0 | OFF}}<NL>

:PHASedif:POSition
The :PHASediff:POSItion command sets which zero-crossing point is used in
the Phasediff comparator. The :PHASediff:POSItion? query returns the
zero-crossing position value of the Phasediff comparator.
Command Syntax: COMParator:PHASediff:POSition <value>
 Where,
<value> is Zero-crossing position value, NR1 format, range from 2 to 20
without unit.
Query Syntax: COMParator:PHASediff:POSition?
Return format: <NR1><NL>

:PHASedif:LIMit
The :PHASedif:LIMit command sets the difference limit value of the Phasediff
comparator. The :PHASedif:LIMit? query returns the current difference limit
value of the Phasediff comparator.
Command Syntax: COMParator:PHASedif:LIMit <value>
 Where,
 <value> can be NR1、NR2 or NR3 format without unit.
For example: WrtCmd(“COMP:PHAS:LIM 2.5”); set the difference limit value
to 2.5%.
 NOTE: Here <value> is a percent value, for example, input 2.5 for 2.5%.
Query Syntax: COMParator:PHASedif:LIMit?
Return format: <NR3><NL>

For multi-channels instrument, the COMParator:AREA<n>，
COMParator:DIFarea<n>，COMParator:COROna<n> and
COMParator:PHASedif<n> commands set the specified winding parameters.
n range from 1 to 4.

23

2.8 Standard WAVE subsystem commands
 The Standard WAVE subsystem commands load a sampled standard
waveform and choosing a sampled standard waveform. Figure 2-8-1 shows
the Standard WAVE subsystem command tree.

Standard WAVeform :LOAD <data block>
 :CHOose
 :VOLTage <value>

:LOAD
The :LOAD command load a sampled standard waveform from PC to the
instrument.
Command Syntax: SWAVeform:LOAD <data block>
data block format：
1. #8xxxxxxxx Followed by the binary data, no Spaces, XXXXXXXX is data

length.
2. $8xxxxxxxx Followed by the string data, no Spaces, XXXXXXXX is data

length.
String format is to convert binary data to the string data, each binary data into
two ASCII character data (a valid data is composed of two bytes), these two
characters represent binary data corresponding to the high four and low four of
hexadecimal data. For example the 0x01 data is converted to "0" and "1" two
characters.
Note: Using the command WAVeform:FORMat {ASCii | BIN} to set the
data back to FORMat.

:CHOose
The :CHOose command is used to select the required standard waveform.
Command Syntax: SWAVeform:CHOose
NOTE: 1. This command is available only on <MEAS DISP> page.

2. This command is valid only when sampling test is finished.

:VOLTage
The :VOLTage command set the impulse voltage value of the loaded standard
waveform.
Command Syntax: SWAVeform:VOLTage <volt>
 Volt is NR1 format with unti of kV or V

Figure 2-8-1

24

Query Syntax: SWAVeform:VOLTage?
Return format: <NR1><NL> if there is no standard waveform, it returns the
current impulse voltage value of the setting.

2.9 Multi WINding subsystem commands(Only for
multi-channels)
 The Multi WINding subsystem commands sets the winding type, working
mode,绕 standard waveform mode and choose the current test winding.
Figure 2-9-1 shows the Multi WINding subsystem commands tree.

Multi WINding :Winding TYPe
 :Working MODe
 :Std MODe
 :Test WINding
 :Current WINding
 :Comparator MODe

:Winding TYPe
The :Winding TYPe command sets the tested winding type. The :Winding
TYPe? query returns the current winding type.
Command Syntax: MWINding:WTYPe {1COIL | 2COIL | 3COIL | 4COIL |
3P3W | 3P4W}
 Where,

1COIL set the tested winding type to single coil,
2COIL set the tested winding type to two coils,
3COIL set the tested winding type to three coils,
4COIL set the tested winding type to four coils,
3P3W set the tested winding type to three-phase three-wire motor
3P4W set the tested winding type to three-phase four-wire motor

Query Syntax: MWINding:WTYPe?
Return format: {1COIL | 2COIL | 3COIL | 4COIL | 3P3W | 3P4W}<NL>

:Working MODe
The :Working MODe command sets the working mode of the instrument.
The :Working MODe? query returns the current working mode of the
instruement.
Command Syntax: MWINding:WMODe {NORMal | BALance}

Figure 2-9-1

25

 Where,
NORMal set the test mode to normal test.
BALance set the test mode to balance test.

Query Syntax: MWINding:WMODe?
Return format: {NORM | BAL}<NL>

:Std MODe
The :Std MODe command sets the mode of standard waveform. The :Std
MODe? query returns the current mode of the standard waveform.

Command Syntax: MWINding:SMODe {Single STD | Multi STD}
 Where,

Single STD is single standard waveform.
Multi STD is multi standard waveform.

Query Syntax: MWINding:SMODe?
Return format: {SSTD | MSTD}<NL>

:Test WINding
The :Test WINding command sets the test sequence of coil. The :Test
WINding? query returns the current test sequence.
Command Syntax: MWINding:TWINding <string>
Query Syntax: MWINding:TWINding?
Return format: <string><NL>
Where, <string> as follows：

Balance Mode： 2COIL: AG-BG, CG-DG, AB-CD
 3COIL: AG-BG-CG, AB-BC-AC

4COIL: AG-BG-CG-DG
Three-phase three-wire: AB-BC-AC
Three-phase four-wire: AG-BG-CG

Normal Mode： 1COIL: AG, BG, CG, DG
 2COIL: AG-BG, CG-DG, AB-CD
 3COIL: AG-BG-CG, AB-BC-AC

4COIL: AG-BG-CG-DG
Three-phase three-wire: AB-BC-AC
Three-phase four-wire: AG-BG-CG

:Current WINding

26

The :Current WINding command sets the current phase on the MEAS DISP
page. The :Current WINding? query returns the current phase on the MEAS
DISP page.

Command Syntax: MWINding:CWINding <string>
Query Syntax: MWINding:CWINding?
Return format: <string><NL>
Where, <string> is as follows：
Balance Mode： 2COIL: AG-BG, CG-DG, AB-CD
 3COIL: AG-BG, BG-CG, CG -AG / AB-BC, BC-AC, AC -AB

4COIL: AG-BG, BG-CG, CG-DG, DG -AG
Three-phase three-wire: AB-BC, BC-AC, AC -AB
Three-phase four-wire: AG-BG, BG-CG, CG -AG

Normal Mode： 1COIL: AG/BG/CG/DG
 2COIL: AG, BG / CG, DG / AB, CD
 3COIL: AG, BG, CG / AB, BC, AC

4COIL: AG, BG, CG, DG
Three-phase three-wire: AB, BC, AC
Three-phase four-wire: AG, BG, CG

:Comparator MODe
The :Comparator MODe command sets the comparator mode of the
instrument. The :Comparator MODe? query returns the current comparator
mode.
Command Syntax: MWINding:CMODe {PUBLic | PRIVate}
 Where,

PUBLic is all the coils using the same parameters and standard
waveform.

PRIVate is all the coils can used the different parameters and standard
waveform.

Query Syntax: MWINding:CMODe?
Return format: {PUBL | PRIV}<NL>

27

2.10 MEASure subsystem commands
The MEASure subsystem commands sets the measurement range of

voltage, frequency and time. Figure 2-10-1 shows the MEASure subsystem
command tree.

MEASure :VOLTage <upper>,<lower>
 :FREQuency <start>,<end>
 :TIME <start>,<end>

:VOLTage
The :VOLTage command sets the measurement range of voltage.
The :VOLTage? query returns the current voltage range.
Command Syntax: MEASure:VOLTage <upper>,<lower>
 Where,
 <upper> is the upper limit of voltage, NR1 format, ranging from -120 to 120
without unit.
< lower> is the lower limit of the voltage, NR1 format, ranging from -120 to
120 without unit.
NOTE: The lower limit must be less than the upper one; otherwise an
error message will be displayed on the system message line.
Query Syntax: MEASure:VOLTage?
Return format: <upper>,<lower><NL> Both upper limit and lower limit are
NR1 format.

:FREQuency
The :FREQuency command sets the frequency range. The :FREQuency?
query returns the currently set frequency range.
Command Syntax: MEASure:FREQuency <start>,<end>
 Where,
<start> is the start point of frequency, NR1 format and ranging from 1 to 650
without unit.
<end> is the end point of frequency, NR1 format and ranging from 1 to 650
without unit.

Figure 2-10-1

28

NOTE: The value of the end point must be larger than that of the start
point; otherwise an error message will be displayed on the system
message line.

NOTE: The measurement ranges of frequency and time are the same,
thus the time range will vary with the frequency range.
Query Syntax: MEASure:FREQuency?
Return format: <start>,<end><NL> Both <start> and <end > are NR1
format.

:TIME
The :TIME command sets the time range. The :TIME? query returns the
current time range.
Command Syntax: MEASure:TIME <star>,<end>
 Where,
<start> is the start point of time, NR1 format and ranging from 1 to 650 without
unit.
<end> is the end point of time, NR1 format and ranging from 1 to 650 without
unit.

NOTE: The value of the end point must be larger than that of the start
point; otherwise an error message will be displayed on the system
message line.

NOTE: The measurement ranges of frequency and time are the same,
thus the time range will vary with the frequency range.
Query Syntax: MEASure:TIME?
Return format: <start>,<end><NL > Both <start> and <end> are NR1 format.

29

2.11 WAVeform subsystem commands
 The WAVeform subsystem commands are used to read the related
parameters of test waveforms and standard waveforms. Figure 2-11-1 shows
the WAVeform subsystem command tree.

WAVeform :FORMat ASCii
 BIN
:POINts ALL

 PEAK
 :SOURce STD
 TEST
 :XINcrement

 :YINcrement
 :READy
 :DATA

:FORMat
The :FORMat command set the format waveform data. The :FORMat? Query

returns the current data format. ASCii means string format, BIN means
binary string format.

Command Syntax: WAVeform:FORMat {ASCii | BIN}
Query Syntax: WAVeform:FORMat?
Return format: {ASC | BIN}<NL>

:POINts
The : POINts command set waveform data length to be transferred waveform.
The : POINts? Query returns the current data length.
Command Syntax: WAVeform:POINts {ALL | PEAK}
 Where,
ALL return all of the data. It is 6500 point.
PEAK return the peak envelope data. It is 650 point.
Query Syntax: WAVeform:POINts?
Return format: {ALL | PEAK}<NL>

:SOURce

Figure 2-11-1

30

The :SOURce command sets the waveform data source. The :SOURce?
query returns the current waveform data source.

Command Syntax: WAVeform:SOURce {STD | TEST}
 Where,

STD sets the waveform data source to the standard waveform.
TEST sets the waveform data source to the test waveform.

Query Syntax: WAVeform:SOURce?
Return format: {STD | TEST}<NL>

: XINcrement?
The :XINcrement? command returns the x-increment value for the currently
selected source. The value is the time between consecutive sampling points in
seconds.
Query Syntax: WAVeform:XINcrement?
Return format: <NR3><NL>

: YINcrement?
The:YINcrement? command returns the vertical voltage value of vertical
scale/25.
Query Syntax: WAVeform:YINcrement?
Return format: <NR3><NL>

:READy?
Query Syntax: WAVeform:READy?
Return format: {0 | 1}<NL>

:DATA?
The :DATA? query returns the data for the waveform.
Query Syntax: WAVeform:DATA?
Return format: <data block><NL>

data block format：
1. #8xxxxxxxx Followed by the binary data, no Spaces, XXXXXXXX is data

length.
2. $8xxxxxxxx Followed by the string data, no Spaces, XXXXXXXX is data

length.

31

For example, header = #800001200，where #8 means that the following
8 bytes represent the data length of waveform, and 00001200 means
that the valid length of waveform data is 1200.

2.12 FETCh subsystem commands
 The FETCh subsystem commands are used to output waveform data,
comparison results, output voltage, frequency and time measurement result.
Figure 2-12-1 shows the FETCh subsystem command tree.

FETCh :Standard WAVeform?
 :Test WAVeform?
 :Comparator RESult?
 :VOLTage?
 :FREQuency?
 :TIME?
 :PEAK?
 :Fail WINding?

:Standard WAVeform?
The :Standard WAVeform? query outputs the current standard waveform data.
Query Syntax: FETCh SWAVeform?

:Test WAVeform?
The :Test WAVeform? Query outputs the latest tested waveform data.
Query Syntax: FETCh TWAVeform?

:Comparator RESult?
The :Compartor RESult? query returns the latest comparison result.
Query Syntax: FETCh CRESult?
Return format:
There are two cases as follows:

1. If the comparator function or four comparison methods is set to
OFF, or no waveform data available, the query response will be
<NR1><NL^END>, here NR1 is 2.

2. If the comparator function is set to on, the return format will be

Figure 2-12-1

32

<NR1, NR3, NR3, NR1, NR3><NL^END>, the first NR1 is the
general comparison result: 1 (PASS) or 0 (FAIL). The following
four data are the comparison results corresponding to each
comparator: AREA SIZE, DIFF ZONE, CORONA and PHASE
DIFF.

: VOLTage?
The :VOLTage? query returns the current voltage value in the set voltage
range. Refer to MEASure subsystem commands for the voltage range
settings.
Query Syntax: FETCh:VOLTage?
Return format: <NR1><NL> NOTE: The unit of the returned voltage is
V.

:FREQuency?
The :FREQuency? query returns the current frequency result in the set
frequency range. Refer to MEASure subsystem commands for the frequency
range settings.
Query Syntax: FETCh:FREQuency?
Return format: <NR3><NL>

NOTE: The unit of the returned frequency is Hz. If the start point is
overlapped with the end cursor completely, then 9.9E37 will be returned.

:TIME?
The :TIME? query returns the current time result in the set time range. Refer to
MEASure subsystem commands for the time range settings.
Query Syntax: FETCh:TIME?
Return format: <NR3><NL>

 NOTE: The unit of the returned time is s.

:PEAK?
The :PEAK? query returns the current peak voltage value of the test
waveform.
Query Syntax: FETCh:PEAK?
Return format: <NR3><NL>

33

:Fail WINding?
The :Fail WINding? query returns the phase of failed test winding. Query
Syntax: FETCh:FWINding?
Return format: <string><NL>

2.13 ABORt subsystem command
U9800 will abort the current measurement as soon as the ABORt

command is received.
Command Syntax: ABORt

2.14 Mass MEMory subsystem commands
The Mass MEMory subsystem commands load and store files. Figure

2-14-1 shows the Mass MEMory subsystem command tree.

Mass MEMory :LOAD :STATe <file number>

 [<“filename”>]
:SAVE STORe :STATe <flie number>

[<“filename”>]
:DELete :STATe <flie number>

 [<“filename”>]

 NOTE: The Mass MEMory subsystem commands will be ignored in the
phase of testing.

:LOAD:STATe
The :LOAD:STATe command is used to load the stored file.
Command Syntax: MMEMory:LOAD:STATe <flie number>
 Where,
<file number> is the file serial number ranging from 1 to 720 without unit.
For example: WrtCmd(“MMEM:LOAD:STAT 1”); load file 1.

NOTE: 1. If the file you want to load is not available, “File not exist”
message will be displayed on the system message line.

2. If the input file number is out of 1 to 720, message “Out of file
range” will be displayed on the system message line.

Figure 2-14-1

34

Command Syntax: MMEMory:LOAD:STATe <“filename”>
 The command is used to find and load the file using the file name directly.

:SAVE:STATe or STORe:STATe
The :SAVE:STATe or STORe:STATe command is used to save the current
setting data to a file.
Command Syntax: MMEMory:STORe:STATe <flie number> [,<“filename”>]
 Where,
<file number> is the file serial number ranging from 1 to 720 , NR1 format
without unit.
<“filename”> The file name consists of less than 20 ASCII characters.
<Unnamed> will be the default name, if you don’t input a file name.
For example: WrtCmd(“MMEM:STOR:STAT 1，“#U9800*””)；

 NOTE: U9800 will not give a warning message when the existent file is
to be over written.

NOTE：The file name assigned by bus will be quoted without any
change, thus user can enter some special characters such as special
symbols and letters in lower case that cannot be input on the panel of
the instrument.

:DELete:STATe
The :DELete:STATe command deletes a file.
Command Syntax: MMEMory:DELete:STATe <file number>
 Where,
<file number> is the file serial number ranging form 1 to 720, NR1 format
without unit.
For example: WrtCmd(“MMEM:DEL:STAT 1”); delete file 1.
 NOTE: U9800 will not give a warning message when a file is to be
deleted.

Command Syntax: Mass MEMory:DELete:STATe “filename”

This command is used to delete a file using the filename directly.

2.15 KEY subsystem commands
KEY commands are used to control the keys and knobs on the operation

panel of U9800.

35

KEY:LOCal enable the front panel operation
KEY:MEASure enter into the <MEAS DISP> page
KEY:SETup enter into the <MEAS SETUP> page
KEY:SYSTem enter into the <SYSTEM > page
KEY:FILE enter into the <FILE LIST> page
KEY:UPPer upper the cursor
KEY:DOWN down the cursor
KEY:LEFT left the cursor
KEY:RIGHt right the cursor
KEY:ADD turn the knob clockwise
KEY:SUB turn the know counter-clockwise
KEY:NUM<n> numeric key，n range from 0 to 9
KEY:DOT decimal point key
KEY:SIGN minus key
KEY:ENTer enter key
KEY:BACKsapce backspace key
KEY:ESC escape key
KEY:STARt start key
KEY:STOP stop key
KEY:SAVE save key
KEY:F<n> soft key, n is from 1 to 6

2.16 SYSTem subsystem commands
 The SYSTem subsystem commands are used for system setups. Figure
2-16-1 shows the SYSTem subsystem commands tree.

SYSTem :DATE
 :TIME
 :Save TYPe
 :SETup
 :FORMat

:DATE

Figure 2-12-1

36

The :DATE command sets the date of system. The :DATE? query returns the
current date.

Command Syntax: SYSTem:DATE <year>,<month>,<day> year,month,day
is NR1 format.

Where, month can be string format：{JANuary | FEBruary | MARch |APRil
|MAY | JUNe | JULy | AUGust | SEPtember | OCTober | NOVember |
DECember}
Query Syntax: SYSTem:DATE?
Return format: <NR1>,<NR1>,<NR1><NL>

:TIME
The :TIME command sets the time of system. The:TIME? query returns the
current time.

Command Syntax: SYSTem:TIME <hour>,<minute>,<second> hour, minute,
second is NR1 format.
Query Syntax: SYSTem:TIME?
Return format: <NR1>,<NR1>,<NR1><NL>

:Save TYPe
The :Save TYPe command sets the file type when pressing SAVE key.
The :Save TYPe? query returns the current file type.

Command Syntax: SYSTem:STYPe {CSV | GIF | BMP8 | BMP24 | PNG}
Query Syntax: SYSTem:STYPe?
Return format: {CSV | GIF | BMP8 | BMP24 | PNG}<NL>

:FORMat
The :FORMat command set the data format. The :FORMat? query returns the
current data format.
Command Syntax: SYSTem:FORMat {ASCii | BIN}
 Where, ASCii is string data format, BIN is binary data format.
Query Syntax: SYSTem:FORMat?
Return format: {ASCii | BIN}<NL>

:SETup
The :SETup command sets parameters for download(excluding standard
waveform data). The :SETup? query returns the parameters.

37

Command Syntax: SYSTem:SETup <data block>
 Where, data block is the parameters returned by SYSTem:SETup? query.
Query Syntax: SYSTem:SETup? This command is equal to *LRN?
Return format: <data block><NL>

data block format：
1. #8xxxxxxxx Followed by the binary data, no Spaces, XXXXXXXX is data

length.
2. $8xxxxxxxx Followed by the string data, no Spaces, XXXXXXXX is data

length.
String format is to convert binary data to the string data, each binary data into
two ASCII character data (a valid data is composed of two bytes), these two
characters represent binary data corresponding to the high four and low four of
hexadecimal data. For example the 0x01 data is converted to "0" and "1" two
characters.
Note: Using the command SYSTem: the FORMat {ASCii | BIN} to set the
data back to FORMat.

38

3 Error and warning message

 The bus commands may have some spelling errors, syntax errors or
wrong parameters. U9800 executes a command after the command is
analyzed. If one of above errors occurs, U9800 halts the command analysis,
and the rest commands will be ignored. If a command (for example a trigger
command is ignored.) is ignored, the rest commands will be executed. The
error and warning messages will be displayed on the system message line.
The following table shows the common error and warning messages, which
will be displayed on the message line when they occur.

Error message Description
Undefined
message

Unknown command is received. Usually there is a
spelling error in the command.
For example: TRG should be TRIG
 DISP:PAG MEAS should be DISP:PAGE
MEAS

Data out of range The data is out of range.
For example: IVOLT 5500, the impulse voltage is out of
its range.

Invalid parameter Unrecognizable parameter is used.
For example: TRIG:SOUR INTER，INTER is not the
correct short-form and should not used.

Invalid suffix Units are unrecognizable, or the units are not correct.
For example: IVOLT:DEL 200us，us can not be the unit
of the impulse voltage.

Data too long Data is too long.
For example: The number of characters for a file name
can not exceed 20 characters and numeric parameter, 20
characters.

Syntax error Error syntax, for example:DISP.PAGE MSET, where（.）
should be（:）.

Trigger ignored When U9800 is in the testing state, all trigger signals will
be ignored.

Command
ignored

Some command may be ignored.
For example: DISP:PAGE MSET
When U9800 is in the testing state, this command will be
ignored.

39

4 Programming Examples

This chapter lists three programming examples in the development
environments of Visual C++ 6.0, Visual Basic 6.0 and LabVIEW 8.5. All the
examples are based on VISA (Virtual Instrument Software Architecture).
VISA is an API (Application Programming Interface) used for controlling
instruments. It is convenient for users to develop testing applications which
are independent of the types of instrument and interface. Note that “VISA”
here we mention is NI (National Instrument)-VISA. NI-VISA is an API written
by NI based on VISA standard. You can use NI-VISA to achieve the
communication between the oscilloscope and PC via GPIB, USB, RS232, LAN
and such instrument bus. As VISA has defined a set of software commands,
users can control the instrument without understanding the working state of
the interface bus. See NI-VISA User Manual and NI-VISA Programmmer
Reference Manual for more information about NI-VISA API.

A typical application of VISA contains the following parts:
1. Set up the conversation for the existing resource
2. Configure the resource (such as: Baud rate)
3. Close the conversation

40

Preparation for Programming

Download NI-VISA software from http://www.ni.com to install it. The installing
path is C:\Program Files\IVI Foundation\VISA.
Take U9800 as an example to show how to construct the communication
between an impulse winding tester and a PC. Use a USB cable with one
teminal connecting the DEVICE interface on the rear panel of the instrument
and the other one connecting the USB interface of PC, as is shown in figure
4-1.

Switch the instrument power on. An upgrading guide dialoge will pop up and
you can install USB Test and Measurement Device software by prompt
information.

Figure 4-1

41

4.1 Visual C++ 6.0 Programming Example
Open Visual C++ 6.0, take the following steps:

1. Create a project based on MFC.
2. Choose Project→Settings→C/C++; select “Code Generation” in Category
and “Debug Multithreaded DLL” in Use run-time library; click OK; as is shown
in figure 4-1-1.

3. Choose Project-> Settings-> Link, add the file visa32.lib manually in
Object/library modules; click OK; as is shown in figure 4-1-2.

4. Choose Tools->Options ->Directories; select Include files in Show
directories for, and then double click the blank in Directories to add the
path of Include: C:\Program Files\IVI Foundation\VISA\WinNT\include, as
is shown in figure 4-1-3.

Select Library files in Show directories for, and then double click the blank in
Directories to add the path of Lib: C\Program Files\IVI
Foundation\VISA\WinNT\lib\msc.

Figure 4-1-1

42

Figure 4-1-3

Figure 4-1-2

43

5. Add controls: Static Text, Edit and Button. See figure 4-1-4.

(1) Add two Static Text controls respectively named as Input and Output.

(2) Add two Edit controls, and then add two variables--m_send and m_read to
them respectively. See figure 4-1-5 and figure 4-1-6.

Figure 4-1-5

Figure 4-1-4

44

(3) Add two Button controls named as Send and Read respectively.

6. Double click Send, enter the programming environment.

(1) Declare “#include“visa.h”” in header file.

(2) Define relative variables and then add the following codes:

ViSession defaultRM, vi;

char buf [256] = {0};

CString s,strTemp;

char* stringTemp;

ViChar buffer [VI_FIND_BUFLEN];

ViRsrc matches=buffer;

ViUInt32 nmatches;

ViFindList list;

(3) In ::CSRDlg(CWnd* pParent /*=NULL*/)

 : CDialog(CSRDlg::IDD, pParent), order m_send = _T("*IDN?\n");

(4) Add the following codes to ::OnInitDialog().

Figure 4-1-6

45

viOpenDefaultRM (&defaultRM);

//acquire USB resource of visa

viFindRsrc(defaultRM, "USB?*", &list,&nmatches, matches);

viOpen (defaultRM,matches,VI_NULL,VI_NULL,&vi);

(5) Add the following codes in Send.
//send the receiving commands
UpdateData (TRUE);
strTemp = m_send + "\n";
stringTemp = (char *)(LPCTSTR)strTemp;
viPrintf (vi,stringTemp);

(6) Add the following codes in Read.
//read the result
viScanf (vi, "%t\n", &buf);
//display the results
m_read = buf;
UpdateData (FALSE);

(7) Add the following codes in ::OnQueryDragIcon().
//close resource.
viClose (vi);
viClose (defaultRM);

7. Save, build and run the project, you will get an EXE file. When the
oscilloscope has been successfully connected with PC, input a command such
as *IDN? (the default input command) in Input edit box and cilck Send and
Read successively, the oscilloscope will return the result which will be
displayed in Output edit box. See figure 4-1-7.

46

Figure 4-1-7

47

4.2 Visual Basic 6.0 Programming Examples

Open Visual Basic6 6.0, take the following setps:

1. Create a Standard EXE project.

2. Choose Project-> Add Module->Existing; find the visa32.bas file in the
Add Module under the path of NI-VISA: C:\Program Files\IVI
Foundation\VISA\WinNT\include, and then add it. See figure 4-2-1.

3. Add two Lables respectively named as Input and Output, two TexBox and
two CommandButtons named as Send and Read seperately. Set Text in the
attribute of TextBox under Input as *IDN?. See figure 4-2-2.

Figure 4-2-1

48

4. Choose Project->Project1 Properties->General, Select Form1 form the
drop down box of Startup Object.

5. Double click Send, enter the programming environment and add the
following codes:
Dim defrm As Long
Dim vi As Long
Dim list As Long
Dim nmatches As Long
Dim matches As String * 200 ' reserves to acquire the equipment ID.
Dim strRes As String * 200

Private Sub Cmd_Read_Click()
' acquire the command return state
Call viVScanf(vi, "%t", strRes)

Figure 4-2-2

49

Txt_output.Text = strRes
End Sub

Private Sub Cmd_Send_Click()
' send the command to query
Call viVPrintf(vi, Txt_input.Text + Chr$(10), 0)
End Sub

Private Sub Form_Load()
' acquire the usb source of visa
Call viOpenDefaultRM(defrm)
Call viFindRsrc(defrm, "USB?*", list, nmatches, matches)
' open the device
Call viOpen(defrm, matches, 0, 0, vi)
End Sub

Private Sub Form_Unload(Cancel As Integer)
' close the resource
Call viClose(vi)
Call viClose(defrm)
End Sub

6. Save and run the project, you will get a single executable program. When
the oscilloscope has been successfully connected with PC, you can input a
command such as *IDN? (the default input command) in Input edit box and
cilck Send and Read successively, the oscilloscope will return the result which
will be displayed in Output edit box. See figure 4-2-3.

50

Figure 4-2-3

51

4.3 LabVIEW 8.5 Programming Examples
Run LabVIEW8.5, take the following steps.

1. Enter Getting Started, choose New>>Blank VI to create a new VI.

Figure 4-3-1

2. Right-click the Front Panel to choose Controls>>Modern>>Boolean>>OK
Button; add three buttons and respectively define them as Write, Read and
Stop. See figure 4-3-2.

52

Figure 4-3-2

3. Open the Block Diagram, right-click it and choose Functions>>
Programming>> Structure>> Event Structure to add an event structure.

4. Open the Block Diagram; right-click the event structure to choose Add
Event Case…; Add the Value Change event for each control; drag all
terminals into their own event structure.

5. Choose the Value Change event structure of the Write terminal; right-click
the blank of the Block Diagram to select Functions>>Instrument
I/O>>VISA>>VISA Write; add a VISA Write function for the Value Change
event structure of the Write terminal.

6. Right-click the Block Diagram to choose Functions>>Instrument
I/O>>VISA>>VISA Advanced>> VISA Open; add a VISA Open function on the
left side of the Write structure event.

7. Right-click the VISA resource name terminal of the VISA Open function;
click the shortcut menu and select Create>>Control to create a VISA resource
name.

8. Wire the VISA resource out terminal of the VISA Open function to the
VISA resource name terminal of the VISA Write function in the event structure;
Connect the error out terminal of the VISA Open function with the error in

53

terminal of the VISA Write function.

9. Right-click the write buffer terminal of the VISA Writer function; click the
shortcut menu and choose Create>>Control to create a write buffer as shown
in figure 4-3-3.

Figure 4-3-3

10. Select the Value Change event structure of the Read terminal; right-click
Functions>> Instrument I/O>> VISA>> VISA Read to add a VISA Read
function into the “Read”: Value Change event structure.

11. Right-click the read buffer terminal of the VISA Read function; click the
shortcut menu and choose Create>>Indicator to create a read butter.

12. Right-click the byte count terminal of the VISA Read function; click the
shortcut menu and choose Create>>Constant to create a constant as 1024.

13. Wire the VISA resource out terminal of the VISA Open function to the
VISA resource name terminal of the VISA Read function in the event structure;
connect the error out terminal of the VISA Open function with the error in
terminal of the VISA Read function shown as figure 4-3-4.

54

Figure 4-3-4

14. Select the Value Change event structure of the Stop terminal; right-click
the blank of the Block Diagram and choose Functions>>Instrument
I/O>>VISA>>VISA Advanced>>VISA Close to add a VISA Close function for
the “Stop”:Value Change event structure.

15. Wire the VISA resource out terminal of the VISA Open function to the VISA
resource name terminal of the VISA Close function in the event structure;
connect the error out terminal of the VISA Open function with the error in
terminal of the VISA Close function shown as figure 4-3-5.

Figure 4-3-5

55

16． Right-click the blank of the Block Diagram and choose
Functions>>Programming>> Structures >>While Loop to add a While Loop
structure outside the event structure.

17. Click the Functions palette and choose
Functions>>Programming>>Boolean>>True Constant to add a True Constant
for the “Stop”: Value Change event structure. Wire the True Constant to the
stop terminal of the While Loop structure.

18. Click the Functions palette and choose Functions>>
Programming>>Dialog& User Interface>> Simpel Error Handler to add a
Simple Error Handler function. Wire the error out terminal of the VISA Close
function to the error in terminal of the Simple Error Handler function.

19. Right-click the Loop Tunnel terminal where the While Loop structure and
the error wire intersected; click the shortcut menu and choose Replace with
Shift Register to create a Loop Shift Register Pair with the purpose of
replacing the Loop Tunnel. Similarly with a Loop Shift Register Pair to replace
the Loop Tunnel where the VISA resource out terminal of the VISA Open
function and the VISA resource name terminal of the VISA Close function
interested.

20. Adjust the style of the Front Panel shown as figure 4-3-6.

Figure 4-3-6

21. Save the current VI. Before running this VI, select the correct VISA
resource name form the VISA resource name pull-down menu.

56

22. Run the current VI. Input your command or query in the writer buffer, for
instance*idn?; click the Write control to send the command or query; then click
the Read control to read the returned information. The execution result is
shown as figure 4-3-7.

23. Click the Stop control to exit this program.
Figure 4-3-7

